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This paper describes a method for determin- 
ing whether patterns of counties, census tracts 

or other types of geographic units depart from a 

configuration that might have occurred by chance. 
The method presented is conceptually simple and 
can be applied with comparative ease through the 

use of a computer program available through 

SHARE1. This paper describes the problem, the 
method of solution and gives some useful proba- 
bility distributions. 

Suppose, for example, a rate of some type 

was calculated for each of the N counties in a 

particular state and a map was shaded, showing 

the N/4 counties having the highest rates. This 
top quartile of counties might distribute them- 

selves in a number of ways - varying from a sin- 
gle cluster forming a large clump to the opposite 
situation, where most of the selected counties 
were isolated, surrounded by counties with low 
rates. Whatever pattern was formed, most observ- 
ers would make a judgment on the meaningfulness 
of the pattern manifested. If the high rate 
counties tended to be those containing large met- 
ropolitan centers, this fact would probably be 
noted rather quickly. If, however, a judgment 
was made whether the high rate counties showed a 

pattern of contiguity - or geographic contagion - 

the problem might become much more difficult. 
The point at which a pattern departs from simple 
randomness is obscure indeed, when it must be 
based upon visual inspection. 

A number of criteria could be formulated de- 
fining nonrandomness. A tendency for the chosen 
counties to form a few clusters, a preponderance 
of chosen counties falling in a single quadrant 
of the state, a "least squares" solution based on 
distance from some focal point - all might be de- 
veloped into probability sampling distributions 
for departures from randomness. In this paper, 
two criteria are developed: (1) the largest 
cluster formed by the selected counties; and (2) 
the number of pairs of contiguous counties found 
among those counties selected. These will be re- 
ferred to as the "clusters" and "pairs" methods. 

Clusters Method 

From a shaded map we have a visual picture 
of geographic contiguity. A nonrandom pattern is 
characterized by clusterings of shaded counties. 
However, our data could be more easily quantified 
if we described the clustering in terms of the 
number of counties found in the largest cluster 
formed by the N/4 sample. With this criterion, 
it is possible to conveniently describe distri- 
butions of many samples, and to obtain probabil- 
ities of the occurrence of clusters of various 

1 The computer program is available through the 
SHARE users group (identified as GO BC GEOG), 
with specifications. 
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sizes. In order to effect this quantification, a 
listing is required for each state showing each 
individual county with its contiguous counties.2 

With the availability of a "county contiguity 
list" (See Table A), it is possible to select a 

sample of N/4 counties, from a particular state 
and note the largest cluster formed by these se- 
lected counties. 

Briefly described, say we have a state with 
100 counties and by use of random numbers select a 
sample of N/4 counties, notated as A, B, C, . . . 

Y. We search the county contiguity list for the 

counties contiguous to A. If counties B and J are 
contiguous to A, we know we have a cluster of at 
least three counties. Next, we scan the list of 
counties contiguous to B and find counties A and 
F. County A was already counted but F is a new 
county and so our cluster is known to include at 
least four counties; A, B, F and J. We proceed 
similarly to search the lists of counties conti- 
guous to F and J, incrementing the cluster size by 
one for each sample county found. We continue to 

county C (the first of the remaining counties sam- 
pled that is not already known to be in our first 
cluster of contiguous counties), repeating the a- 
bove procedure, and hence on to county Y, the last 

county included in our sample. When we have fin- 

ished, we record the number of counties in the 
largest cluster formed. If we were to repeat this 
procedure for many samples, accumulating the re- 
sults, we would have an approximate sampling dis- 
tribution for the largest cluster size found for 
that state when N/4 counties are selected by 
chance. For example, the State of Iowa has 99 
counties from which 3,000 independent samples of 
25 counties each were selected. In about 5 per- 
cent of these 3,000 samples a cluster as large as 

2 It should be noted here that the determination 
of contiguity or noncontiguity is often quite 
arbitrary. In this paper, two counties were re- 
quired to share a common border in order to be 
considered contiguous. If they were separated by 
water narrow enough to be bridged, they were con- 
sidered contiguous. Hence, the Mississippi was 
not a barrier to contiguity but Lake Michigan was. 
However, different investigators may want to apply 
different rules for county connections. For ex- 
ample, when four counties meet at a point, so that 
their borders form a "cross" ( +), a decision must 
be made as to whether or not the diagonal counties 
are to be considered contiguous. If "point conti- 
guity" is accepted, i.e., if the diagonal counties 
are considered contiguous, does this carry over to 

the situation where the borders describe pairs of 
obtuse angles, rather than right angles as was the 
case for the cross? These decisions should be 
made only after careful consideration of these 
problems, since alternatives produce significantly 
different results. 
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10 counties was found; in 1 percent, a cluster as 
large as 13 counties was found, and in .1 percent, 
a cluster as large as 16 counties was found. 

Pairs Method3 

The use of the largest cluster size found is 
not always an ideal measure of geographic conti- 
guity. If there were several smaller clusters, 
there might be a departure from randomness even 
though the largest cluster had only a moderate 
probability level. Another approach would be to 
obtain the sampling distribution of the number of 
pairs of contiguous counties found when selecting 
many random samples of N/4 counties. A large num- 
ber of pairs of counties could be found either in 

the situation where there was a single very large 
cluster, or, several smaller clusters. 

The number of pairs of contiguous counties 
found in a sample would be ascertained, again by 
recourse to the county contiguity list, accumula- 
ting a tally for every border common to two coun- 

ties included in the sample. In the above example 
for the State of Iowa, in 3,000 samples, 19 pairs 
of counties were found in 31 percent of the sam- 
ples, 21 pairs in 1 percent of the samples, and 24 
pairs in .1 percent of the samples. 

Discussion 

The "clusters" method and the "pairs" tend to 

give similar results when applied to live data. 

The pairs method is more sensitive to the situa- 
tion where several clusters of moderate size are 
formed by the sampled counties, sometimes showing 
a significant probability level where the clusters 
method is not significant in terms of the number 
of contiguous counties in the largest cluster. 
However, this gain in sensitivity in the pairs 
method, is in equal measure lost, when contiguity 
is concentrated in a single cluster. In this sit- 
uation, the clusters method may show a significant 
probability level while the pairs method shows a 
very moderate probability. 

Figures 1 and 2 illustrate these different 
situations. Figure 1 shows the lowest quartile of 
counties in terms of live birth rate for Iowa in 

1962. The largest cluster contains 13 counties. 
This occurred less than once in every 100 trials 
when using chance methods. However, among these 
same counties there were 17 pairs (instances of 2 
low quartile counties sharing a common border). 
This occurred about 12 times in every 100 trials 
when using chance methods. Figure 2 shows the 
contrasting situation where the cluster of 8 coun- 
ties was shown to have occurred over 11 times in 

every 100 trials whereas the pairs method occurred 
only twice in every 100 trials. 

Since the various states tend to contain dif- 
ferent numbers of counties and since the configur- 
ation of counties tends to vary as well, clearly, 

3 The authors are indebted to Donald Loveland for 
suggesting this approach. 

each state has its own unique sampling distribu- 

tion. Even where two states have the same number 

of counties and the appearance of the counties is 

similar, their sampling distributions are often 

distinctly dissimilar when subjected to a Kolmo- 

gorov- Smirnov test. The general appearance of the 

sizes and shapes of the counties in a state gives 

little indication of the probability pattern that 

will emerge. 

Table 1 shows the Estimated Cumulative Proba- 

bility Distribution for Cluster Sizes of Contigu- 

ous Counties for Selected States based on 3,000 

samples drawn from each state. Each Sample in- 

cluded about 25 percent of the counties in the 

state. Referring again to the State of Iowa, 

the table shows that in .001 of the samples, the 

largest cluster formed by the 25 sample counties 

was 2 counties; that in about half the samples 

(.492) the largest cluster found was 5 counties, 

or less. Similarly, in 95.2 percent, the largest 

cluster formed was 10 counties or less. The larg- 

est cluster of contiguous counties found in the 

3,000 samples drawn was 16 counties. From a sam- 

ple of 25 counties in the State of Iowa, it would 

be rare indeed to find the largest cluster to be 

as few as 2 counties, or as many as 16 counties. 

Since these probability distributions were 

developed by the Monte Carlo method, they are 

qualified as estimated distributions. Barring a 

bias in the pseudo- random number generator used by 

the computor (BC RNDY), the true probability 

limits could be estimated by the usual method. 

For a 10- county cluster in the State of Iowa 

which has an estimated cumulative probability of 

.952, a .05 level confidence interval would be 

calculated as: 

.952 + 1.96 (/(.048)(.952) = .952 + .008 

V 3,000 

There appear to be two main problems in the 

practical application of this methodology. Let us 

say an investigator is attempting to ascertain 

whether a particular type of congenital anomaly 

found in newborn infants shows a nonrandom geo- 

graphic distribution. Usually the investigator 

would not know in what percent of the counties the 

anomaly should show high rates - perhaps in N/4 of 

the counties or perhaps N /10. This would depend 

on the distribution of the factors which he hy- 

pothesizes gives rise to high incidence of the 

anomaly. Since each sample size (N /4 or N /10) 

would have a different sampling distribution, the 

task of selecting an appropriate sample size be- 

comes critical. The only solution to this would 

seem to be to rank the counties according to inci- 

dence rates and if some of the high incidence 

counties were tested to show significant depar- 

tures from a norm - to cut off below these coun- 

ties and use that number as the sample size. The 

use of "fortuitous" distributions would not appear 

to invalidate the ultimate probabilities since 

these are based on the geographic pattern mani- 

fested, rather than on the statistical signifi- 

cance of the rates in the selected counties. 



The second problem is more subtle. The 
probability distribution obtained is valid and 
useful in an a priori sense. However, usually an 
investigator has the data on a shaded map and is 

interested in knowing whether the distribution is 

nonrandom. When viewed in an a posteriori sense, 
it may appear invalid to use the tabled proba- 
bilities because of gross irregularities in the 

particular counties included in the shaded portion 
of the map. For example, if a shaded map of Cali- 
fornia showed a number of the coastal counties in 

the high rate quartile, the tabled probabilities 
would be inappropriate for comparison because the 
probabilities were obtained from all counties. 
Since the coastal counties have no contiguous 
counties on their ocean side, they would have less 
opportunity to be included in large clusters and 
no opportunity to contribute pairs for a portion 
of their borders. Therefore, clusters of counties 
which included coastal counties would occur less 
often than suggested by the tabled probabilities. 
At the other extreme, an unusually large size 
county would tend to border on more counties than 
the average size county and would therefore be 
found in clusters more often than suggested by the 
tabled probabilities. In atypical situations such 
as these it might be reasonable to compare the ob- 
tained pattern with a large number of samples 
which included one or more specified counties in 

each sample selected. The resulting conditional 
probabilities would reflect this bias introduced 
by the inclusion of a constant county. 

The computer program mentioned in the intro- 
duction allows for the inclusion of constant coun- 
ties for obtaining these biased probability 
distributions. 

Analysis of county contiguity within a state 
often shows clusters of counties along state boun- 
daries. The question arises as to the results 
that might have been obtained had the bordering 
state been included in the analysis. The computer 
program allows for grouping a number of states in- 

to a single analysis and gives probability distri- 
butions of clusters and pairs of counties drawn 
from this larger parameter. 

While geographic contiguity is not a common 
statistical problem, it is frequently encountered 
in epidemiology and geography. The "shaded map" 
seems to present a strong stimulus for "closure" 
or resolution, compelling the observer toward in- 
terpretation. In the experience of the authors, 
several observers may interpret a shaded map as 
showing various degrees of contagion. The most 

articulate, or, the senior observer present, wins 
the argument. The methodologies presented in this 

paper, when properly applied, provide the in- 

vestigator with a simple, objective determination 
of contiguity. 

255 

REFERENCES 

Geary, R. C. "The Contiguity Ratio and Statisti- 

cal Mapping ", Incorporated Statistician, 

Volume 5, 1954. 

Ederer, Fred; Myers, Max H. and Mantel, Nathan. 

A Statistical Problem in Space and Time: Do 

Leukemia Cases Come in Clusters? 1963 

(Unpublished). 

Table A 

SAMPLE COUNTY CONTIGUITY LISTING 

(A portion of the State of Iowa 

showing counties according to numeric code.) 

INDEX 
COUNTY 

01 

02 

03 

04 

05 

06 

07 

08 

99 

COUNTIES CONTIGUOUS TO INDEX COUNTY 

15 39 61 88 02 

69 15 01 88 87 

96 22 

93 68 26 

83 14 39 15 

86 07 10 57 48 

38 12 09 10 06 86 

37 94 40 85 77 25 

46 41 40 35 94 
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LIVE BIRTH RATE IN 1962 

(lowest quartile) 

Largest cluster - 13 counties 

Probability that a cluster as large as 13 counties 

could have occurred by chance =.008 

Number of pairs of counties - 17 

Probability that as many as pairs of counties 

could have occurred by chance =.117 

Figure I. A Configuration Favoring The Cluster Method 
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CRUDE DEATH RATE IN IOWA 1962 

(lowest quartile) 

Largest cluster - 8 counties 

Probability that a cluster as large as 8 counties 

could have occurred by chance =.116 

Number of pairs of counties - 20 

Probability that as many as 20 pairs of counties 

could have occurred by chance =.018 

Figure 2. A Configuration Favoring The Pairs Method 



ESTIMATED PROBABILITY DISTRIBUTION FOR CLUSTER SIZES OF CONTIGUOUS COUNTIES 
SELECTED STATES - 25 PERCENT SAMPLE 

(Based on 3,000 trials) 

NUMBER OF 
COUNTIES IN 

LARGEST CLUSTER 
ALABAMA1 

(17) 
ARKANSAS 

(19) 

CALI- 
FORNIA 
(14) 

COLO- 
RADO 
(16) 

IOWA 
(25) 

KEN- 
TUCKY 
(30) 

LODI- 
SIANA 
(16) 

MINNE- 
SOTA 
(22) 

MIS- 
SOURI 
(29) 

MONTANA 
(14) 

NEBRASKA 
(23) 

PENN- 
SYLVANIA 

(17) 

SOUTH 
DAKOTA 
(17) 

TEN 
NESSEE 
(24) 

VIP 
GINIA 
(24) 

WIS- 
CONSIN 
(18) 

1 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 .000 
2 .005 .003 .037 .014 .001 .000 .146 .003 .000 .028 .002 .012 .014 .001 .003 .011 
3 .103 .076 .255 .137 .062 .016 .164 .059 .018 .227 .080 .139 .142 .040 .073 .122 
4 .319 .265 .543 .369 .254 .122 .426 .265 .134 .493 .306 .391 .397 .193 .270 .354 
5 .538 .499 .767 .583 .492 .312 .646 .476 .327 .700 .536 .507 .607 .419 .497 .568 

6 .701 .672 .879 .736 .688 .515 .793 .651 .511 .834 .725 .762 .769 .610 .687 .726 
7 .820 .804 .947 .838 .806 .674 .913 .773 .672 .915 .826 .863 .866 .748 .814 .831 
8 .896 .882 .976 .908 .884 .778 .937 .860 .785 .963 .898 .921 .923 .851 .882 .905 
9 .946 .933 .991 .952 .931 .865 .966 .914 .860 .984 .938 .953 .960 .916 .928 .953 
10 .974 .959 .997 .975 952 .910 .988 .947 .912 .993 .966 .979 .979 .954 .957 .971 

11 .988 .980 .999 .989 .977 .948 .994 .972 .947 .999 .982 .993 .990 .973 .978 .987 
12 995 .989 .995 .986 .968 .998 .985 .968 .986 .998 .995 .985 .986 .994 
13 .998 .994 .998 .992 .982 .999 .993 .980 .995 .999 .999 .992 .990 .998 
14 .999 .998 .999 .996 .991 .997 .989 .998 .995 .995 .999 
15 .999 .998 .995 .998 .993 .999 .998 .998 
16 .999 .998 .999 .997 .999 .999 
17 .999 .999 

1 Number in parentheses is the nimber of eounties used in the 3,000 trials for that state 25 of 
the total number of in the state. 



Table 2 

ESTIMATED CUMULATIVE PROBABILITY DISTRIBUTION FOR THE NUMBER OF PAIRS OF CONTIGUOUS COUNTIES 
SELECTED STATES - 25 PERCENT SAMPLE 

(Based on 3,000 trials) 

1 

ON PME ALABAMA' (17) 

ARKANSAS 
(19) 

FORNIA 
(14) 

COLORADO 
(16) 

IOWA 
(25) 

KENTUCKY 
(30) 

LOUI. 

(16) 

MINNE- 
SOTA 
(22) 

MISSOURI 
(29) 

MONTANA 
(14) 

NEBRASKA 
(23) 

PENN- 
SYLVANIA 

(17) 

SOUTH 
DAKOTA 
(17) 

TENNESSEE 
(24) 

VIPGIA 
(24) 

WISCONSIN 
(18) 

1 .000 .001 .000 .000 .000 .000 .001 .000 .000 .000 .000 .000 

2 .000 .000 .004 .001 .000 .000 .001 .000 .000 .003 .000 .001 .000 .000 .000 .000 

3 .001 .000 .028 .003 .000 .000 .004 .001 .000 .018 .000 .003 .001 .000 .000 .002 

4 .004 .001 .083 .015 .000 .000 .013 .001 .000 .064 .000 .012 .009 .000 .000 .009 

5 .016 .004 .196 .048 001 .000 .005 .000 .155 .002 .032 .033 .000 .001 .023 

6 ,052 .016 .353 .104 .004 .000 .137 .011 .000 .298 .010 .080 .089 .001 .003 .061 

7 .122 .050 .523 .216 .012 .000 .260 .031 .000 .470 .027 .170 .191 .004 .007 .128 

8 .234 .109 .685 .361 .031 .000 .415 .064 .001 .629 .069 .310 .320 .012 .017 .245 

9 .368 .214 .815 .517 .074 .002 .566 .139 .005 .758 .147 .464 .471 .031 .045 .371 
10 .523 .344 .894 .657 .144 .004 .721 .231 .009 .860 .245 .615 .625 .073 .094 .528 

11 .664 .495 .948 .778 .238 .012 .822 .338 .024 .925 .359 .745 .754 .137 .164 .674 
12 .779 .637 .376 .863 .354 .031 .896 .478 .052 .964 .501 .842 .852 .227 .272 .786 
13 .868 .746 .991 .926 .493 .060 .941 .597 .096 .982 .631 .912 .923 .345 .404 .871 
14 .930 .835 .996 .962 .632 .111 .987 .715 .161 .993 .756 .952 .958 .467 521 .923 
15 .967 .901 998 082 .752 .183 .983 .805 .256 .997 .851 .977 .978 .592 .641 .956 

16 .982 .949 .999 ,990 .842 .277 .991 .884 .356 .999 .906 .990 .988 .703 .748 .978 
17 .992 .970 .997 .883 .382 .996 .922 .480 .943 .994 .996 .804 .832 .987 
18 .996 .986 .999 .938 .508 .998 .954 .587 .969 .996 .998 .868 .897 .995 
19 .998 .994 .965 .617 .999 .974 .690 .984 .999 .999 .921 .935 .999 
20 .999 .998 .982 .719 .985 .770 .993 .949 .964 

21 .999 .993 .798 .993 .846 .997 .972 .980 
22 .996 .861 .995 .899 .998 .985 .991 
23 .998 .909 .999 .935 .999 .994 .995 
24 .999 .942 .961 .997 .997 
25 .943 .976 .997 .999 

26 .983 .987 .999 
27 .989 .991 
28 .995 .996 
29 .998 .998 
30 .999 .999 

of 3,000 trials that particular state 25 of the total 
of in the state. 


